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Abstract

The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to
harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated.
Donnell’s non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method.
Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on
the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect
of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion
are studied by using a code based on the arclength continuation method. A series of accurate experiments
on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes
have been intensively investigated for different vibration amplitudes. A closed loop control of the force
excitation has been used. The actual geometry of the test shell has been measured and the geometric
imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena
have been experimentally observed and numerically reproduced, such as softening-type non-linearity,
different types of travelling wave response in the proximity of resonances, interaction among modes with
different numbers of circumferential waves and amplitude-modulated response. For all the modes
investigated, the theoretical and experimental results are in strong agreement.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Large-amplitude vibrations of circular cylindrical shells have interested many researchers in the
second half of the last century. However, experimental results are still scarce and the effect of
geometric imperfections still needs clarification.

*Tel.: +39-0521-905-896; fax: +39-0521-905-705.

E-mail address: marco@me.unipr.it (M. Amabili).

URL: http://me.unipr.it/mam/amabili/amabili.html.

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 2 2 - 4 6 0 X ( 0 2 ) 0 1 0 5 1 - 9



A full literature review of work on the non-linear dynamics of shells in vacuo, filled with or
surrounded by quiescent and flowing fluids has been given by Amabili and Pa.ıdoussis [1] and will
not be repeated here. However, it is necessary to refer to some fundamental and some recent
contributions. Briefly, it is possible to attribute to Evensen [2] and Dowell and Ventres [3] the
original idea of mode expansions of the shell flexural displacement involving the two asymmetric
modes with the same shape (sine and cosine functions around the shell circumference; one is
directly driven by external excitation, the driven mode; the other is referred to as the companion
mode) and an axisymmetric term; their intuition was supported by a few available experimental
results. The studies of Ginsberg [4] and Chen and Babcock [5] constitute important contributions
to the study of the influence of the companion mode on the non-linear forced response of circular
cylindrical shells. Ganapathi and Varadan [6] studied the free response by using the finite element
method. Gon-calves and Batista [7] and Amabili et al. [8] studied the response of fluid-filled shells.
In particular, Gon-calves and Batista [7] neglected companion mode participation, the importance
of which in the non-linear response was investigated by Amabili et al. [8]. In a recent series of
papers Amabili et al. [9–13] systematically studied the non-linear dynamics and large-amplitude
vibrations of circular cylindrical shells with and without quiescent or flowing fluid by using a base
of seven natural modes. The convergence of the solution was recently studied by Pellicano et al.
[14] by using additional modes; a parametric study was also performed to investigate switches for
softening type to hardening type non-linearity.
Geometric imperfections of the shell geometry (out-of-roundness) were considered in buckling

problems since the end of the 1950s. However, there is no trace of their inclusion in studies of
large-amplitude vibrations of shells until the beginning of the 1970s. Research on this topic was
probably introduced by Vol’mir [15]. Kubenko et al. [16] used a two-mode travelling-wave
expansion, taking into account axisymmetric and asymmetric geometric imperfections. Only free
vibrations were studied, but the effect of the number of circumferential waves on the non-linearity
was investigated. In particular, the results showed that the non-linearity is of softening type and
that it increases with the number of circumferential waves. The effect of axisymmetric and
asymmetric imperfections was to increase the value of the natural frequency; this is in contrast
with results of other studies.
Watawala and Nash [17] studied the free and forced conservative vibrations of closed circular

cylindrical shells by using Donnell’s non-linear shallow-shell theory. Empty and liquid-filled
shells with a free-surface and a rigid bottom were studied. A mode expansion that may be
considered a simple generalization of Evensen’s [2] was introduced; it implies a no moment-free
condition at both ends of the shell. A single term was used to describe shell geometric
imperfections. Cases of (i) the mode shape of the shell response being the same as that of the
imperfections and (ii) the mode shape of the response being different (actually the same, but
rotated) from that of the imperfections were analyzed. Numerical results showed softening type
non-linearity. The imperfections lowered the linear frequency of vibrations when the mode shape
of the shell response is the same as that of the imperfection, and they affected the non-linearity.
Results for forced vibrations were obtained only for beam-bending modes, for which Donnell’s
non-linear shallow-shell theory is not appropriate; these results indicated hardening type non-
linearity.
Amabili and Pellicano [18] studied non-linear supersonic flutter of imperfect circular shells by

using Donnell’s non-linear shallow-shell theory and expansions with up to 22 modes. They
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introduced asymmetric and axisymmetric geometric imperfections expanded in a series of
seven terms.
Experimental work is much less abundant than theoretical and numerical study. Chen and

Babcock [5] measured the softening type response for the fundamental mode of an empty shell
with end rings and detected travelling waves around the shell at an excitation frequency close to a
resonance. Sivak and Telalov [19] obtained experimental results for the backbone curve (relative
to free vibrations) on a vertical circular cylindrical shell made of titanium alloy in contact with
water having a free surface. Experiments were performed with the shell partially filled and
partially submerged in water, under radial excitation. The experimental boundary conditions
simulated a clamped shell. Most of the experiments indicated softening-type non-linearity. Chiba
[20,21] experimentally studied large-amplitude vibrations of two vertical cantilevered circular
cylindrical shells made of polyester sheet, empty and partially filled with water to different levels.
He observed that for modes with the same axial wavenumber, the weakest non-linearity (as usual,
of the softening type) is associated to the mode having the minimum natural frequency. He also
found that shorter tanks have a larger softening non-linearity than longer ones. The tank with a
lower liquid height had a greater softening non-linearity than the tank with a higher liquid level.
Travelling wave response and coupling between two bulging modes (and between two sloshing
modes) were also observed. Large-amplitude vibrations of two vertical clamped circular
cylindrical shells, partially filled with water to different levels were also studied by Chiba [22].
Amabili et al. [23] have given the details on the experiments reported in Ref. [11] for comparison
purpose. The softening response was measured but the travelling wave was not observed for
asymmetry of the test shell and added masses of sensors.
Non-linear interaction between asymmetric and axisymmetric modes has been investigated by

Amabili et al. [24] and Pellicano et al. [25] in case of internal resonances. Interaction between
asymmetric modes with different number of circumferential waves has been studied by Kubenko
and Koval’chuk [26].
The present paper extends the study of Amabili et al. [11] (i) to deal with shells having geometric

imperfections, (ii) using very accurate mode expansions (16 or more modes instead of 7), which
permit one to reach convergence of the solution as shown in Ref. [14], and (iii) presenting,
discussing and reproducing numerically a new series of accurate and complete experimental
results on an empty and water-filled shell. The response of simply supported circular
cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest
natural frequencies is investigated in this paper. Donnell’s non-linear shallow-shell theory is used
and the solution is obtained by Galerkin projection. Experiments on an empty and water-filled
circular cylindrical shell made of stainless steel have given results in good agreement with the
present theory. The imposed boundary conditions approximate a simply supported shell at
both ends.

2. Equation of motion, boundary conditions and mode expansion

A cylindrical co-ordinate system ðO; x; r; yÞ is chosen, with the origin O placed at the centre of
one end of the shell. The displacements of points in the middle surface of the shell are denoted by
u; v and w; in the axial, circumferential and radial directions, respectively; w is taken positive
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inwards. Initial imperfections of the circular cylindrical shell associated with zero initial tension
are denoted by inward radial displacement w0; only radial initial imperfections are considered. By
using Donnell’s non-linear shallow-shell theory, the equation of motion for finite-amplitude
transverse dynamic deformation of a thin, imperfect, circular cylindrical shell is given by [17,18]

Dr4w þ ch ’w þ rh .w ¼ f � p þ
1

R
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where D ¼ Eh3=½12ð1� n2Þ� is the flexural rigidity, E Young’s modulus, n the Poisson ratio, h the
shell thickness, R the mean shell radius, r the mass density of the shell, c the coefficient of viscous
damping, p the radial pressure applied to the surface of the shell as a consequence of the contained
fluid, and f is an external modal excitation of unspecified physical origin, which has the form

f ¼ f1;n cos ðnyÞ sin ðpx=LÞ cos ðotÞ; ð2Þ

where f1;n is a coefficient having dimension of pressure. Excitations with frequency close to the
natural frequency of lowest modes are considered; low-frequency modes have a predominant
radial motion and are identified by the pair ðn;mÞ; where n is the number of circumferential waves
and m is the number of axial half-waves. The viscous damping model introduced in Eq. (1) is
unrealistic and will be replaced by modal-damping coefficients experimentally identified in the
equations of motion used to perform numerical calculations.
In Eq. (1) the overdot denotes a time derivative and F is the in-plane Airy stress function. Here

F is given by the following compatibility equation [17,18]:
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In Eqs. (1) and (3), the biharmonic operator is defined as r4 ¼ ½@2=@x2 þ @2=ðR2@y2Þ�2:
Donnell’s non-linear shallow-shell equations are accurate only for modes with a large number n of
circumferential waves; specifically, 1=n2{1 is required in order to have fairly good accuracy (i.e.,
nX4 or 5). Donnell’s non-linear shallow-shell equations are obtained by neglecting the in-plane
inertia, transverse shear deformation and rotary inertia, giving accurate results only for very thin
shells, i.e., h{R: In-plane displacements are assumed to be infinitesimal, i.e., juj{h; jvj{h;
whereas w is of the same order of the shell thickness.
The forces per unit length in the axial and circumferential directions, as well as the shear force,

are given by [3]
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The force–displacement relations are
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In this study, attention is focused on a finite, simply supported, circumferentially closed circular
cylindrical shell of length L: The following out-of-plane boundary conditions are imposed:

w ¼ w0 ¼ 0; ð8aÞ

Mx ¼ �Dfð@2w=@x2Þ þ n½@2w=ðR2@y2Þ�g ¼ 0; ð8bÞ

@2w0=@x2 ¼ 0 at x ¼ 0;L; ð8cÞ

where Mx is the bending moment per unit length. The in-plane boundary conditions are

Nx ¼ 0 at x ¼ 0;L: ð9aÞ

and

v ¼ 0 at x ¼ 0;L: ð9bÞ

Moreover, u; v and w must be continuous in y:
Past studies show that a linear modal base is the simplest choice to discretize the system. In

particular, in order to reduce the number of degrees of freedom, it is important to use only the
most significant modes. It is necessary to consider, in addition to the asymmetric mode directly
driven into vibration by the excitation (driven mode), (i) the orthogonal mode having the same
shape and natural frequency but rotated by p=ð2nÞ (companion mode), (ii) additional asymmetric
modes, and (iii) axisymmetric modes. In fact, it has clearly been established that, for large-
amplitude shell vibrations, the deformation of the shell involves significant axisymmetric
oscillations inwards (see Section 8.3). According to these considerations, the radial displacement w

is expanded by using the eigenmodes of the empty shell (which are unchanged for the completely
filled shell):

wðx; y; tÞ ¼
XM1

m¼1

XN

n¼1

½Am;nðtÞcosðnyÞ þ Bm;nðtÞsinðnyÞ�sinðlmxÞ þ
XM2

m¼1

Am;0ðtÞsinðlmxÞ; ð11aÞ

where n is the number of circumferential waves, m is the number of longitudinal half-waves,
lm ¼ mp=L and t is the time, Am;nðtÞ; Bm;nðtÞ and Am;0ðtÞ are the generalized co-ordinates that are
unknown functions of t: The integers N; M1 and M2 must be selected with care in order to obtain
the required accuracy and acceptable dimension of the non-linear problem. The number of
degrees of freedom used in the present numerical calculations is 16 or more. It is observed, for
symmetry reasons, that the non-linear interaction among linear modes of the chosen base involves
the asymmetric modes ðn > 0Þ having a given n value (the resonant mode), the asymmetric modes
having a multiple of this value of circumferential waves (k � n; where k is an integer), and
axisymmetric modes ðn ¼ 0Þ; asymmetric modes with different numbers of circumferential waves,
that do not satisfy the relationship k � n; have interaction only if their natural frequencies are very
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close to relationship 1:1, 1:2 or 1:3 with the frequency of the resonant mode ðn;mÞ: Only modes
with an odd m value of longitudinal half-waves can be considered for symmetry reasons [8,9,11] (if
imperfections with an even m value are not introduced). In particular, asymmetric modes having
up to three longitudinal half-waves (M1 ¼ 3; only odd m values) and modes having n; 2� n and
3� n circumferential waves have been considered in the numerical calculations. For axi-
symmetric modes M2 ¼ 7 has been used (only odd m values). Actually, M1 ¼ M2 ¼ 3 is sufficient
to guarantee good accuracy. However, as it has been shown in Refs. [11,14], additional
axisymmetric modes give a small contribution to the shell response while additional asymmetric
modes with more than three longitudinal half-waves are practically negligible. This is the reason
for having M2 larger than M1: The form of the radial displacement used in the numerical
calculation is

wðx; y; tÞ ¼
X3
m¼1

X3
k¼1

½Am;knðtÞcosðknyÞ þ Bm;knðtÞsinðknyÞ�sinðlmxÞ

þ
X4
m¼1

Að2m�1Þ;0ðtÞsinðlð2m�1ÞxÞ: ð11bÞ

However, expansions involving additional asymmetric modes that do not satisfy the
relationship k � n; but having frequency close to relationship 1:1 or 1:2 with the driven mode,
have been introduced for some cases (see Sections 8.2 and 8.3).
The presence of couples of modes having the same shape but different angular orientations, the

first one described by cosðn yÞ (driven mode for the excitation given by Eq. (2)) and the other by
sinðn yÞ (companion mode), in the periodic response of the shell leads to the appearance of
travelling-wave vibration around the shell in the angular direction (see Section 4.1). This
phenomenon is related to the axial symmetry of the system.
When the excitation has a frequency close to the resonance of mode ðn;m ¼ 1Þ; results show

that the generalized co-ordinates A1;nðtÞ and B1;nðtÞ have the same frequency as that of the
excitation; the co-ordinates A1;2nðtÞ; B1;2nðtÞ; A3;2nðtÞ; B3;2nðtÞ and all the co-ordinates associated to
axisymmetric modes have twice the frequency of the excitation; the co-ordinates A3;nðtÞ; B3;nðtÞ;
A1;3nðtÞ; B1;3nðtÞ; A3;3nðt) and B3;3nðtÞ have three times the frequency of the excitation.
The initial radial imperfection w0 is expanded in the same form of w; i.e., in a double Fourier

series satisfying boundary conditions (8a) and (8c) at the shell edges,

w0ðx; yÞ ¼
X*M1

m¼1

X*N

n¼1

½ *Am;n cosðnyÞ þ *Bm;n sinðnyÞ�sinðlmxÞ þ
X*M2

m¼1

*Am;0 sinðlmxÞ; ð12Þ

where *Am;n; *Bm;n and *Am;0 are the modal amplitudes of imperfections; *N; *M1 and *M2 are integers
indicating the number of terms in the expansion.

3. Fluid–structure interaction

The contained fluid is assumed to be incompressible and inviscid. Liquid-filled shells vibrating
in low-frequency range satisfy very well the incompressible hypothesis. The non-linear effects in
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the dynamic pressure and in the boundary conditions at the fluid–structure interface are neglected.
These non-linear effects have been found to be negligible by Gon-calves and Batista [7] and Lakis
and Laveau [27]. The shell prestress due to the fluid weight is also neglected. The fluid motion is
described by the velocity potential F; which satisfies the Laplace equation

r2F ¼
@2F
@x2

þ
@2F
@r2

þ
1

r

@F
@r

þ
1

r2
@2F

@y2
¼ 0: ð13Þ

The velocity of the fluid is related to F by v ¼ �rF: No cavitation is assumed at the fluid-shell
interface,

@F
@r

� �
r¼R

¼ ’w: ð14Þ

Both ends of the fluid volume (in correspondence to the shell edges) are assumed to be open, so
that a zero pressure is assumed there,

ðFÞx¼0 ¼ ðFÞx¼L ¼ 0: ð15Þ

A solution of Eq. (13) satisfying condition (15) is given by

F ¼
XN
m¼1

XN
n¼0

½amnðtÞcosðnyÞ þ bmnðtÞsinðnyÞ� ½cmnInðlmrÞ þ dmnKnðlmrÞ�sinðlmxÞ; ð16Þ

where InðrÞ and KnðrÞ are the modified Bessel functions of the first and second kind of order n;
respectively. Eq. (16) must satisfy boundary condition (14) and F must be finite (regular) at r ¼ 0:
By using the assumed mode shapes w; given by Eq. (11), the solution of the boundary-value
problem for internal fluid only is

F ¼
XM

m¼1

XN

n¼0

½ ’AmnðtÞcosðnyÞ þ ’BmnðtÞsinðnyÞ�
InðlmrÞ

lmI
0
nðlmRÞ

sinðlmxÞ; ð17Þ

where I0nðrÞ is the derivative of InðrÞ with respect to its argument and M is the largest between M1

and M2: Therefore, the dynamic pressure p exerted by the contained fluid on the shell is given by

p ¼ rF ð ’FÞr¼R ¼
XM

m¼1

XN

n¼0

rF ½ .AmnðtÞcosðnyÞ þ .BmnðtÞsinðnyÞ�
InðlmRÞ

lmI
0
nðlmRÞ

sinðlmxÞ; ð18Þ

where rF is the mass density of the internal fluid. Eq. (18) shows that the inertial effects due to the
fluid are different for the asymmetric and the axisymmetric terms of the mode expansion. Hence,
the fluid is expected to change the non-linear behaviour of the fluid-filled shell. Usually the inertial
effect of the fluid is larger for axisymmetric modes, thus enhancing the non-linear behaviour of the
shell (see Section 8.2).

4. Stress function and solution

Expansions (11a) and (11b) used for the radial displacement w satisfy identically the boundary
conditions given by Eqs. (8a) and (8b); moreover, they satisfy exactly the continuity of the
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circumferential displacement [8],Z 2p

0

@v=@y dy ¼ vð2pÞ � vð0Þ ¼ 0; ð19Þ

as has been verified after calculation of the stress function F from Eq. (3).
The boundary conditions for the in-plane displacements, Eqs. (9a) and (9b), give very complex

expressions when transformed into equations involving w: Therefore, they are modified into
simpler integral expressions that satisfy Eqs. (9a) and (9b) on the average [3]. Specifically, the
following conditions are imposed:Z 2p

0

NxR dy ¼ 0; at x ¼ 0;L; ð20Þ

Z 2p

0

Z L

0

Nxy dx R dy ¼ 0: ð21Þ

Eq. (20) ensures a zero axial force Nx on the average at x ¼ 0;L; Eq. (21) is satisfied when v ¼ 0
on the average at x ¼ 0; L and u is continuous in y on the average. Substitution of Eqs. (9a) and
(9b) into Eqs. (20) and (21) simplifies computations, although it introduces an approximation
(boundary conditions (9a) and (9b) are exactly satisfied at n discrete points, where n is the number
of circumferential waves).
When the expansions of w and w0; Eqs. (11a) and (12), are substituted in the right-hand side of

Eq. (3), a partial differential equation for the stress function F is obtained; the solution may be
written as

F ¼ Fh þ Fp; ð22Þ

where Fh is the homogeneous solution and Fp the particular solution. The particular solution is
given by

Fp ¼
X2M

m¼1

X2N

n¼1

ðFmn1 sinmZ sin nyþ Fmn2 sinmZ cos nyþ Fmn3 cosmZ sin nyþ Fmn4 cosmZ cos nyÞ

þ
X2N

n¼1

ðF0n3 sin nyþ Fmn4 cos nyÞ þ
X2M

m¼1

ðFm02 sinmZþ Fm04 cosmZÞ; ð23Þ

where N is the same as in Eq. (11a), M is the largest between M1 and M2; Z ¼ px=L and the
functions of time Fmnj; j ¼ 1;y; 4; have a long expression not reported here; they have been
identified by using the Mathematica computer program [28] for symbolic manipulations by using
the technique sited in Appendix A. The homogeneous solution may be assumed to have the form
[8,9]

Fh ¼
1

2
%NxR2y2 þ

1

2
x2 %Ny �

1

2pRL

� Z L

0

Z 2p

0

@2Fp

@x2

� �
R dy dx

	
� %NxyxRy; ð24Þ
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where %Nx; %Ny; and %Nxy are the average in-plane restraint stresses (forces per unit length) generated
at the shell ends, defined as

%N# ¼ ½1=ð2pLÞ�
Z 2p

0

Z L

0

N# dx dy; ð25Þ

where the symbol # must be replaced by x; y and xy: Boundary conditions (20) and (21) allow one
to express %Nx; %Ny and %Nxy; see Eqs. (5)–(7), in terms of w; w0 and their derivatives. The expressions
obtained inserting the expansion of w given by Eq. (11b) in Eqs. (5)–(7) and (25) are given in
Appendix B. Eq. (24) is chosen in order to satisfy the boundary conditions imposed. Moreover, it
satisfies Eqs. (4) on the average.
By use of the Galerkin method, 16 (or more) second order, ordinary, coupled non-linear

differential equations are obtained for the variables Am;knðtÞ; Bm;knðtÞ and Am;0ðtÞ; for m ¼ 1;y;M
and k ¼ 1;y; 3; by successively weighting the single original Eq. (1) with the functions that
describe the shape of the modes retained in Eq. (11). These equations have very long expressions
containing quadratic and cubic non-linear terms and are studied both by using (i) the software
AUTO 97 [29] for continuation and bifurcation analysis of non-linear ordinary differential
equations, and (ii) direct integration of the equations of motion by using the DIVPAG routine of
the program library IMSL. The software AUTO 97 is capable of continuation of the solution,
bifurcation analysis and branch switching by using arclength continuation and collocation
methods. In particular, the shell response under harmonic excitation has been studied by using an
analysis in two steps: (i) first the excitation frequency has been fixed far enough from resonance
and the magnitude of the excitation has been used as bifurcation parameter; the solution has been
started at zero force where the solution is the trivial undisturbed configuration of the shell and has
been continued up to reach the desired force magnitude; (ii) when the desired magnitude of
excitation has been reached, the solution has been continued by using the excitation frequency as
bifurcation parameter.
The Galerkin projections of the equation of motion (1) have been performed analytically by

using the Mathematica computer software [28] in order to avoid numerical errors, which arise
from numerical calculations of surface integrals of trigonometric functions. The Galerkin
projection of the modal excitation f on the weighting functions zs; gives

/f ; zsS ¼
Z 2p

0

Z L

0

fzs dx Rdy ¼
pRL

2
f1;n cosðotÞ for s ¼ 1;

0 for sa1;

8<
: ð26Þ

where z1 ¼ cosðnyÞsinðpx=LÞ; z2 ¼ sinðnyÞsinðpx=LÞ;y according to the mode expansion utilized.
Therefore, the modal excitation considered gives a non-zero contribution only to mode
A1;nðtÞcosðnyÞsinðpx=LÞ; i.e., on the driven mode. The mode having the shape of the driven
mode, but rotated by p=ð2nÞ; i.e., with form B1;nðtÞsinðnyÞsinðpx=LÞ; is referred to as the
companion mode and is not directly excited in this case.
This kind of external excitation is quite unrealistic. Practically, one or more forces are usually

applied to the system. A more realistic case is the one of a harmonic point excitation, modelling
for instance the excitation by an electro-dynamical exciter (shaker); the above considerations are
important in the analysis of the experimental results presented in Sections 7 and 8. The point force
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excitation *f is the resultant of the pressure distribution

f ¼ *fdðRy� R*yÞdðx � *xÞcosðotÞ; ð27Þ

where d is the Dirac delta function, *f is the magnitude of the localized force, *y and *x give the
angular and axial co-ordinates of the point of application of the force, respectively. If the point
excitation is located at *y ¼ 0; *x ¼ L=2; the Galerkin projection of the excitation f on the weighing
functions zs gives

/f ; zsS ¼
*f cosðotÞ for zs axisymmetric or containing cosðnyÞ;

0 for zs containing sinðnyÞ:

(
ð28Þ

In this case, setting *f ¼ f1;npRL=2 the only difference between modal excitation and point
excitation is that the point excitation directly drives all modes described by a cosine function in
angular direction y and also the axisymmetric modes.

4.1. Travelling wave response

Away from resonance, the companion mode solution disappears (B1;nðtÞ ¼ 0) and the
generalized co-ordinates are nearly in phase or in opposite phase. The presence of the companion
mode in the shell response leads to the appearance of a travelling wave and to more complex
phase relationships among the generalized co-ordinates. The flexural mode shapes are represented
by Eq. (11). Upon supposing that the response of the driven and companion modes have the same
frequency of oscillation, i.e., A1;nðtÞ ¼ a1;n cosðot þ y1Þ and B1;nðtÞ ¼ b1;n cosðot þ y2Þ; and
considering the other co-ordinates having smaller amplitude, Eq. (11) can be rearranged as

w ¼f½a1;n cosðot þ y1Þ þ b1;n sinðot þ y2Þ�cosðnyÞ þ b1;n sinðny� ot � y2Þgsinðpx=LÞ

þ Oða21;n; b
2
1;n; a3;n;y; a1;0; a3;0;yÞ; ð29Þ

where a1;n and b1;n are the amplitudes of driven and companion modes, respectively, and y1 and y2
are the phases. Eq. (29) gives a combined solution consisting of a standing wave plus a travelling
wave of amplitude b1;n moving in angular direction around the shell with angular velocity o=n:
The resulting standing wave is given by the sum of the two standing waves, one of amplitude a1;n
and the second of amplitude b1;n; having the same circular frequency o and the same shape, but
having a phase difference of y2 � y1 � p=2: When y2 � y1Dp=2; as it is generally observed in
calculations and experiments, the amplitude of the resulting standing wave is almost a1;n � b1;n;
therefore it becomes zero for a1;n ¼ b1;n and y2 � y1 ¼ p=2; when a pure travelling wave appears.
The amplitude and frequency of the travelling wave solution are not affected by the phase
relationship between driven and companion modes.
It is important to observe that the companion mode arises as a consequence of the symmetry of

the system. This phenomenon represents a fundamental difference vis-"a-vis linear vibrations.

5. Experimental set-up

Tests have been conducted on a commercial circular cylindrical shell made of stainless steel and
having a longitudinal seam weld. The dimensions and material properties of the shell are:
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L¼520mm, R ¼ 149:4mm, h ¼ 0:519mm, E ¼ 1:98� 1011 Pa, r ¼ 7800 kg/m3, rF ¼ 1000 kg/m3

and n ¼ 0:3: Two stainless-teel annular plates of external and internal radius of 149.4 and 60mm,
respectively, and thickness 0.25mm have been welded to the shell ends to approximate the simply
supported boundary condition of the shell. A rubber disk 1mm thick has been glued to each of
these annular end plates (see Fig. 1). The tank has been tested empty and completely filled with
water. The zero pressure boundary condition is well approximated by the flexible rubber disks at
the shell ends. Two small pipe fittings were welded onto one of the end plates in such a position
that they do not affect shell vibrations; they are used for filling the specimen with water.
The shell has been suspended horizontally with cables to a box-type frame and has been

subjected to (i) burst-random excitation to identify the natural frequencies and perform a modal
analysis by measuring the shell response on a grid of points, (ii) harmonic excitation, increasing or
decreasing by very small steps the excitation frequency in the spectral neighbourhood of the
lowest natural frequencies to characterize non-linear responses in presence of large-amplitude
vibrations. The excitation has been provided by an electrodynamical exciter (shaker), model LDS
V406 with power amplifier LDS PA100E, connected to the shell by a stinger glued in a position
close to the middle of the shell, specifically at x ¼ 251mm. A piezoelectric force transducer, model
B&K 8200, of mass 21 g, placed on the shaker and connected to the shell by a stinger, measured
the force transmitted. The shell response has been measured by using two accelerometers, model
B&K 4393, of mass 2.4 g. For all non-linear tests, the two accelerometers have been glued close to
the middle of the shell length, specifically at x ¼ 264mm, at different angular positions
corresponding to an antinode and a node of the excited driven mode to measure the non-linear
response. The specific locations of the accelerometers are given in Table 1 for the different modes
investigated. The time responses have been measured by using the Difa Scadas II front-end
connected to a HP c3000 workstation with the software CADA-X of LMS for signal processing
and data analysis; the same front-end has been used to generate the excitation signal. The CADA-
X closed-loop control has been used to keep constant the value of the excitation force for any
excitation frequency, during the measurement of the non-linear response.

Fig. 1. Photograph of the experimental set-up.

M. Amabili / Journal of Sound and Vibration 262 (2003) 921–975 931



5.1. Geometric imperfections

The shell surface of the tested shell has been measured on a lathe by using a dial gauge on a grid
of 100 points, i.e., five equidistant circumferences and 20 positions around each circumference.
Moreover, a fine grid of additional 68 points has been measured around the longitudinal weld
where small deformations of the shell are present. Fig. 2(a) shows the geometry of the measured
central circumference with the magnitude of detected imperfection magnified by a factor 10; in
particular, both measured points and their associated Fourier interpolation are given. The origin
of the angular co-ordinate y is taken at the excitation point. The geometric imperfections in the
central circumference are mainly localized around the weld at y ¼ 631; as shown in Fig. 2(a), with
a protuberance of about 0.15mm. The Fourier series interpolating the measured points of
Fig. 2(a) is given in Appendix C. Obviously, Fourier coefficients from measurements on other
circumferences are slightly different. Geometric imperfections in the longitudinal direction are
plotted in Fig. 2(b) at y ¼ 601; i.e., 31 ahead of the longitudinal welding. Results show that
deformations are mainly concentrated at the longitudinal weld and at the shell ends, where the
annular end plates have been welded to the shell.

Table 1

Location Ry of the two accelerometers in large-amplitude vibration tests; excitation at origin y ¼ 0

Mode Shell filling 1st accelerometer (mm) 2nd accelerometer (mm)

n ¼ 5 Empty 26.5 �21
n ¼ 6 Empty �17.5 22.5

n ¼ 4 and 6 Water filled 46.5 �12
n ¼ 5 Water filled 30 �17
n ¼ 7 Water filled �7 27

n ¼ 10 Water filled 0 24

Fig. 2. Geometric imperfections of the shell surface: (a) central circumference (imperfections magnified 10 times); (b)

line at y ¼ 601: J, measured point; —, Fourier interpolation; - - -, perfect geometry.
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6. Modal analysis (linear results)

The frequency response functions (FRFs) have been measured between 100 response points and
one single excitation point. Both excitation force and measured responses have been in the radial
direction. The response points have been located on a grid of five equidistant circumferences and
20 positions around each circumference; this allows for detection of mode shapes with up to 10
circumferential waves. The experimental modal analysis has been performed by using the software
CADA-X 3.5b of LMS and burst-random excitation with the following parameters: burst length,
55% for empty shell, 70% for water-filled shell; frequency resolution 0.15Hz; 10 averages;
uniform windows. The FRFs have been estimated using the HV technique. The modal parameters
have been estimated by using the time domain, least-squares complex exponential technique for
the water-filled shell and the frequency domain, direct parameter identification technique for the
empty shell. The analysis of the experimental data has been validated by using the modal
assurance criterion and the modal phase collinearity.
Due to the axial symmetry of the shell, each asymmetric mode presents two poles in the FRFs

associated with orthogonal modes having the same shape but circumferentially rotated by p=ð2nÞ;
i.e., cosðnyÞ and sinðnyÞ modes. However, due to the small imperfections of the shell, the two
frequencies are not coincident but very close. Many of these couple of modes have been
experimentally detected in the low-frequency range.
The sum of the measured FRFs is shown in Fig. 3 with identification of natural modes for both

the empty and the water-filled shell. The measured natural frequencies are presented and
compared in Figs. 4 and 5 to theoretical calculations with the linear Fl .ugge’s theory of shells, e.g.,
see Ref. [30], both for the empty and water-filled shell. In Figs. 6 and 7 eighth experimental mode
shapes with one longitudinal half-wave ðm ¼ 1Þ and different number of circumferential waves n
are shown for the empty and water-filled shell, respectively. The dashed line represents the 2nd
mode, when a couple of modes has been detected. Damping coefficients are given in the figure
caption and are sensibly larger for the water-filled shell, except for modes n ¼ 3 and 4. However,
some inaccuracy in the measurement of damping of these modes, for the empty shell, is
accountable for the frequency shift due to the change of position (and therefore added mass) of
the accelerometers during the tests. The fundamental mode is (n ¼ 5; m ¼ 1) for both the empty
and the water-filled shell. Theoretical and experimental results are in good agreement both in
natural frequencies and mode shapes. This assures that the experimental boundary conditions
approximate simple supports with good accuracy. The three-dimensional representation of three
measured mode shapes of the water-filled shell is given in Fig. 8.

7. Non-linear results for the empty shell

7.1. Response of perfect shell and effect of imperfections

Numerical calculations have been performed for the fundamental mode (n ¼ 5; m ¼ 1) of the
empty shell tested in the experiments in order to investigate the effect of geometric imperfections
of a given shape on the natural frequency and non-linear response.
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Fig. 3. Sum of the measured FRFs with identification of natural modes: (a) empty shell; (b) water-filled shell.
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Fig. 9 shows the natural frequency of the fundamental mode of the empty shell versus the
amplitude of three different geometric imperfections: (i) axisymmetric imperfection *A1;0; (ii)
asymmetric imperfection *A1;n having the same shape of the fundamental mode, and (iii)
asymmetric imperfection *A1;2n having twice the number of circumferential waves of the
fundamental mode. The axisymmetric imperfection does not divide the double eigenvalue
associated with the fundamental mode; this is only obtained by asymmetric imperfections. Small
positive axisymmetric imperfections (inward Gaussian curvature) decrease the natural frequency,
negative axisymmetric imperfections (outward Gaussian curvature) increase it. Moreover,
imperfections having twice the number of circumferential waves with respect to the resonant
mode have a very large effect on its natural frequency, as indicated in Fig. 9(c); imperfections with
the same number of circumferential waves have a smaller effect, but still significant. Imperfections
with a number of circumferential waves that is not a multiple of n play a very small role.
The response–frequency relationship of the perfect, empty shell under harmonic point

excitation of magnitude 1.5N is given in Fig. 10 upon assuming modal damping on the
fundamental mode z1;n ¼ 0:0008: Only the resonant generalized co-ordinates A1;nðtÞ and B1;nðtÞ are
plotted; the co-ordinate A1;nðtÞ is the driven mode because it has an antinode at the location of the
excitation force; the co-ordinate B1;nðtÞ is the companion mode. The companion mode has the
same shape of the driven mode, but it is angularly rotated by p=ð2nÞ and has amplitude different

Fig. 4. Theoretical and experimental natural frequencies of the empty shell. Theoretical results: —, m ¼ 1; ?; m ¼ 2:
Experimental results: &, m ¼ 1; � , m ¼ 1; 2nd mode; n, m ¼ 2:
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Fig. 5. Theoretical and experimental natural frequencies of the water-filled shell. Theoretical results: —, m ¼ 1; ?;
m ¼ 2; - - -, m ¼ 3: Experimental results: &, m ¼ 1; � , m ¼ 1; 2nd mode; n, m ¼ 2; +, m ¼ 2; 2nd mode; J, m ¼ 3:

Fig. 6. Experimental modes, empty shell. J, K measured points; —, - - - interpolating lines from Fourier analysis;

+driving point.

M. Amabili / Journal of Sound and Vibration 262 (2003) 921–975936



from zero only in a small neighbourhood of resonance. It presents a node at the location of the
excitation force and therefore it is not directly excited; its amplitude is different from zero only for
large-amplitude vibrations, due to non-linear coupling. In the narrow frequency region where

Fig. 7. Experimental modes, water-filled shell.J,Kmeasured points; —, - - - interpolating lines from Fourier analysis;

+driving point.

Fig. 8. Three-dimensional representation of measured natural modes with one longitudinal half-wave ðm ¼ 1Þ for the
water-filled shell; all points at the intersection of two lines have been measured: (a) mode n ¼ 5; (b) mode n ¼ 3; (c)
mode n ¼ 10:
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Fig. 9. Natural frequency of the fundamental mode (n ¼ 5; m ¼ 1) of the empty shell versus the amplitude of geometric

imperfections: (a) axisymmetric imperfection *A1;0; (b) asymmetric imperfection *A1;n; (c) asymmetric imperfection *A1;2n:
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both A1;nðtÞ and B1;nðtÞ are different from zero, they give rise to a travelling wave around the shell,
as previously discussed in Section 4.1; phase shift between the two co-ordinates is almost p=2: The
response–frequency relationship of the shell in Fig. 10, showing softening type non-linearity, is a
well-known result; see e.g., Refs. [4,5,8,10,11,14]. However, the present calculations use a base of
16 modes, practically reaching convergence of the solution.
Asymmetric imperfections with the same shape of the resonant mode have a large effect on the

non-linear response. Fig. 11 shows the shell response along with responses of the imperfect shell
with *A1;n ¼ 0:5h and *B1;n ¼ 0:5h (positive or negative asymmetric imperfections give the same
result; this is not true for axisymmetric imperfections, see Section 8.1). Results show that the trend
of non-linearity is minimally affected in this case, but the travelling wave response is largely
modified, due to the fact that natural frequencies of the driven and companion modes do not
coincide anymore. Imperfections with 2n circumferential waves, where n is the circumferential
wavenumber of the mode excited, will be discussed in Section 7.2.

7.2. Comparison of theoretical and experimental results

The fundamental mode of the empty shell has been measured to be divided into a couple of
orthogonal modes having the same shape (n ¼ 5; m ¼ 1) but slightly different frequency, 209.33

Fig. 10. Response amplitude–frequency relationship of the resonant generalized co-ordinates A1;nðtÞ and B1;nðtÞ for the
fundamental mode of the perfect, empty shell. The maximum amplitude of A1;nðtÞ; driven mode, and B1;nðtÞ; companion
mode, is plotted.
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and 212.6Hz. The small difference in the frequency of the two, virtually identical, modes is
attributed to imperfections of the test specimen, reported in Section 5.1, and to the mass of the
sensors glued to the wall of the shell. In addition, imperfections affect the position of the mode

Fig. 11. Response amplitude–frequency relationship of the resonant generalized co-ordinates for the fundamental

mode of the empty shell; perfect shell and shell with geometric imperfections *A1;n and *B1;n: (a) driven mode A1;nðtÞ; (b)
companion mode B1;nðtÞ:
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shapes on the circumference with respect to the excitation point, making it more difficult to find
nodes. Without imperfections, the first one of the couple of modes presents an antinode at the
excitation point; the second mode presents there a node. The node closest to the excitation point
has been experimentally determined for each of these two modes and an accelerometer has been

Fig. 12. Experimentally measured acceleration versus excitation frequency for the fundamental mode of the empty

shell: (a) 1st accelerometer; (b) 2nd accelerometer. —+—, force 0.025N; —J—, force 0.25N up (i.e., increasing the

excitation frequency); – –m– –, force 0.25N down (i.e., decreasing the excitation frequency); —&—, force 0.5N up;

, force 0.5N down; —K—, force 0.75N up; – –� – –, force 0.75N down.
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placed there. Therefore each one of the two accelerometers is at a node of one mode,
corresponding to an antinode of the other, orthogonal mode. The location of the accelerometers is
given in Table 1. It can be immediately observed that both accelerometers are considerably far
from the excitation point. Therefore both modes are directly driven by the excitation. The
projections of the excitation force on A1;nðtÞ and B1;nðtÞ give 0.64 *f and 0.768 *f; respectively.
Figs. 12(a) and (b) show the accelerations measured by the two accelerometers around the

fundamental frequency versus the excitation frequency for four different force levels: 0.025, 0.25,
0.5, and 0.75N. The closed-loop control used in the experiments keeps the excitation force
constant after filtering the signal from the load cell in order to use only the harmonic component
with the given excitation frequency. The measured accelerations reported in Fig. 12 have been
filtered in order to eliminate any frequency except the excitation frequency. Experiments have
been performed both increasing and decreasing the excitation frequency; the frequency resolution
used in this case is 0.025Hz. The hysteresis between the two curves (up=increasing frequency;
down=decreasing frequency) is clearly visible. Sudden increments (jumps) of the vibration
amplitude are observed upon increasing and decreasing the excitation frequency; these are
characteristic of a weak softening-type non-linearity. When the vibration amplitude is equal to 0.7
times the shell thickness, the peak of the response appears for a frequency lower of about 0.37%
with respect to the linear one (i.e., the one measured with force 0.025N). The travelling wave
response around the shell, associated with significant acceleration measured by both
accelerometers at the same frequency, is not observed in this case because the separation of the
two modes with the same shape is too large for the maximum force level reached in the
experiments.
The phase relationships between the two accelerations (measured positive outwards) and the

force input (measured positive inwards) are given in Fig. 13.

Fig. 13. Experimentally measured response phase–frequency curves for the fundamental mode of the empty shell; force

0.75N. —K—, 1st accelerometer up; —’—, 2nd accelerometer up; – –n– –, 1st accelerometer down; – –B– –, 2nd

accelerometer down.
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The measured accelerations have been converted to displacements, dividing by the excitation
circular frequency squared, and have been plotted in Fig. 14 together with the theoretical
responses for the case with a force level of 0.75N; normalization of frequency with respect to
o1;n ¼ 212:6� 2p has been performed. When comparing filtered experimental results to
theoretical results only co-ordinates A1;nðtÞ and B1;nðtÞ must be considered because the others,
which have higher frequency as observed in Section 2, are eliminated by the filter. The theoretical
curves have been computed by including the geometric imperfection *A1;2n ¼ 0:072h; which is the
value needed to reproduce the frequency difference between the two modes (n ¼ 5; m ¼ 1); this
value is not too far from the geometric imperfection with 10 circumferential waves measured on
the central circumference, which is 0:11h; as reported in Appendix C. The modal damping used to
calculate the theoretical curves is z1;n ¼ 0:00077 (0.077%) for A1;n and z1;n ¼ 0:00084 (0.084%) for
B1;n and these have been identified by matching the maximum value of the measured response.
The agreement between the theoretical curves and the experimental results is particularly good.
The second mode shape of the empty shell is (n ¼ 6; m ¼ 1). Also in this case the natural

frequencies are split to 221.07 and 222.85Hz. The locations of the two accelerometers (i.e., of
nodes of the two modes) are given in Table 1. The measured accelerations have been converted to
displacements and have been plotted in Fig. 15 together with the theoretical responses for the case
with a force level of 1.25N; normalization of frequency with respect to o1;n ¼ 222:85� 2p has
been performed. The geometric imperfection *A1;2n ¼ 0:053h has been used to reproduce the
frequency difference between the two modes. The modal damping used to calculate the theoretical
curves is z1;n ¼ 0:00143 for A1;n and z1;n ¼ 0:00095 for B1;n and these have been identified similarly
as for the fundamental mode. The agreement between the theoretical curves and the experimental
results is also good in this case. In contrast to the fundamental mode, a small travelling wave
response has been observed close to the two resonances. However, the vibration amplitude of the
two generalized co-ordinates is far from being the same for any frequency in the range
investigated. Therefore the travelling wave response is much smaller than the standing wave
response.

8. Non-linear results for the water-filled shell

8.1. Response of perfect shell and effect of imperfections

Calculations have been performed for the fundamental mode (n ¼ 5; m ¼ 1) of the water-filled
shell tested in the experiments. Fig. 16 shows the natural frequency of the fundamental mode of
the water-filled shell versus the amplitude of five different geometric imperfections: (i)
axisymmetric imperfection *A1;0; (ii) ovalization imperfection *A1;2; (iii) asymmetric imperfection
*A1;n having the same shape of the fundamental mode, (iv) asymmetric imperfection *A1;2n having
twice the number of circumferential waves of the fundamental mode, and (v) asymmetric
imperfections with 16 circumferential waves, which is not a multiple of n: Results show that
ovalization imperfections and asymmetric imperfections with 16 circumferential waves have a very
small effect on the natural frequency of the fundamental mode; moreover, they do not split the
double eigenvalue. Similar to the case of an empty shell, the imperfection giving the larger effect
on natural frequency is *A1;2n: Axisymmetric imperfection does not split the double eigenvalue
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Fig. 14. Response amplitude–frequency relationship for the fundamental mode of the empty shell; force 0.75N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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Fig. 15. Response amplitude–frequency relationship for the mode (n ¼ 6; m ¼ 1) of the empty shell; force 1.25N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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associated with the fundamental mode; small positive imperfections (inward Gaussian
curvature) decrease the natural frequency, negative (outward Gaussian curvature) imperfections
increase it.
The response–frequency relationship of the fundamental mode of the perfect, water-filled shell

under harmonic point excitation of magnitude 3N is given in Fig. 17 upon assuming modal
damping z1;n ¼ 0:0017: The response–frequency relationship of the shell in Fig. 17 shows a largely
increased softening behaviour, due to the contained water, with respect to the one of the
fundamental mode of the same, empty shell given in Fig. 10. Fig. 17 presents a main branch ‘‘1’’
corresponding to zero amplitude of the companion mode B1;nðtÞ; this branch has pitchfork
bifurcations at o=o1;n ¼ 0:9714 and 1.0018 where branch ‘‘2’’ appears. This new branch

Fig. 16. Natural frequency of the fundamental mode (n ¼ 5; m ¼ 1) of the water-filled shell versus the amplitude of

geometric imperfections: (a) Axisymmetric imperfection *A1;0; (b) ovalization imperfection *A1;2; (c) asymmetric

imperfection *A1;n; (d) asymmetric imperfection *A1;2n; (e) asymmetric imperfection *A1;16:
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Fig. 17. Response amplitude–frequency relationship of the resonant generalized co-ordinates A1;nðtÞ and B1;nðtÞ for the
fundamental mode of the perfect, water-filled shell: (a) maximum amplitude of A1;nðtÞ; driven mode; (b) maximum

amplitude of B1;nðtÞ; companion mode. 1, branch ‘‘1’’; 2, branch ‘‘2’’; BP, pitchfork bifurcation; TR, Neimark–Sacker

bifurcations.
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corresponds to participation of both A1;nðtÞ and B1;nðtÞ that gives travelling wave response. Branch
‘‘2’’ loses stability through two Neimark–Sacker (torus) bifurcations at o=o1;n ¼ 0:9716 and
0.9949. No stable response is indicated in Fig. 17 for 0:9911oo=o1;no0:9949; in fact, only simple-
periodic responses are indicated as stable solutions in Fig. 17. The response of the shell for
0:9911oo=o1;no0:9949 is modulated in amplitude (quasiperiodic).
The effect of axisymmetric imperfection with magnitude equal to the shell thickness on the non-

linear response is limited, as shown in Fig. 18. Fig. 19 shows that ovalizaton of an amplitude twice
as big as the shell thickness is even less important. However, asymmetric imperfections with the
same shape of the resonant mode have a large effect on the non-linear response, as shown in
Figs. 20 and 21. Similar to what observed in Fig. 11 for the empty shell, the trend of non-linearity
is minimally affected in this case, but the travelling wave response is completely modified. It is
easy to conclude that imperfections having the same shape of the mode excited and with the same

Fig. 18. Response amplitude–frequency relationship of the main generalized co-ordinates for the fundamental mode of

the water-filled shell; perfect shell and shell with axisymmetric geometric imperfections *A1;0 ¼ 7h: (a) driven mode

A1;nðtÞ; (b) companion mode B1;nðtÞ; (c) first axisymmetric mode A1;0ðtÞ:
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order of magnitude of the shell thickness (the magnitude 0:5h has been simulated here) are able to
change almost completely the shell response around a resonance. Imperfections with 2n
circumferential waves, where n is the circumferential wavenumber of the mode excited, will be
discussed in Section 8.2.

8.2. Comparison of theoretical and experimental results in the frequency domain

The fundamental mode (n ¼ 5; m ¼ 1) of the water-filled shell has been measured to be split in a
couple of orthogonal modes having the same shape but slightly different frequency, 74.9 and
76.28Hz, whereas the theoretical value is 76.16Hz, according to Fl .ugge’s theory of shells and
77.64Hz according to Donnell’s shallow-shell theory. Of these two modes, the one with the lowest
frequency will be referred as the 1st mode; the other will be the 2nd mode. The location of the
shapes of these two modes with respect to the excitation point has been experimentally determined
and an accelerometer has been placed at a node of each mode, corresponding to an antinode of
the 2nd mode. The locations of the two accelerometers are given in Table 1; as a consequence, the
projections of the excitation force on A1;nðtÞ and B1;nðtÞ give 0.543 *f and 0.84 *f; respectively.
Therefore, both modes are directly excited.
Fig. 22 shows the accelerations measured by the two accelerometers versus the excitation

frequency for five different force levels: 0.1, 1.5, 3, 4.5 and 6N. The measured accelerations
reported in Fig. 22 have been filtered in order to eliminate any other frequency, except the

Fig. 19. Response amplitude–frequency relationship of the driven mode A1;nðtÞ for the fundamental mode of the water-
filled shell; perfect shell and shell with ovalization *A1;2 ¼ 2h:
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Fig. 20. Response amplitude–frequency relationship of the resonant generalized co-ordinates for the fundamental

mode of the water-filled shell; shell with geometric imperfection *A1;n ¼ 0:5h: (a) driven mode A1;nðtÞ; (b) companion
mode B1;nðtÞ:
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Fig. 21. Response amplitude–frequency relationship of the resonant generalized co-ordinates for the fundamental

mode of the water-filled shell; shell with geometric imperfection *B1;n ¼ 0:5h: (a) driven mode A1;nðtÞ; (b) companion
mode B1;nðtÞ:
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Fig. 22. Experimentally measured acceleration versus excitation frequency for the fundamental mode of the water-filled

shell: (a) 1st accelerometer; (b) 2nd accelerometer. —B—, force 0.1N; —n—, force 1.5N up (i.e., increasing the

excitation frequency); – –*– –, force 1.5N down (i.e., decreasing the excitation frequency); —K—, force 3N up;

– –J––, force 3N down; —’—, force 4.5N up; – –+––, force 4.5N down; , force 6N up; – –� ––, force 6N down.
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excitation frequency. Experiments have been performed both increasing and decreasing the
excitation frequency and hysteresis is clearly visible. The frequency resolution used in this case is
0.025Hz. Sudden increments (jumps) of the vibration amplitude are observed upon changing the
excitation frequency; these are characteristic of softening type non-linearity, which is much
stronger than in the corresponding case for the empty shell (see Fig. 12). When the vibration
amplitude is equal to the shell thickness, the peak of the response appears for a frequency lower of
more than 1% with respect to the linear one (i.e., the one measured with force 0.1N). The
travelling wave response around the shell has been detected in a relatively large-frequency range
around the resonance, especially for the excitation force of 6N.
The phase relationships between the two accelerations (measured positive outwards) and the

force input (measured positive inwards) are given in Fig. 23; the phase shift between the first and
second accelerometer is about p=2 when travelling wave response arises.
The measured accelerations have been converted to displacements, dividing by the excitation

circular frequency squared, and have been plotted in Figs. 24–26 together with the theoretical
responses for the case with force levels of 0.1 (linear case), 3 and 6N, respectively; normalization
of frequency with respect to o1;n ¼ 76:28� 2p has been performed. The co-ordinate A1;n has
resonance for the first mode; B1;n has resonance for the second mode. The theoretical curves have
been computed by including the geometric imperfection *A1;2n ¼ 0:0817h; which is the value needed
to reproduce the frequency difference between the two modes (n ¼ 5; m ¼ 1); this value is close
enough to the geometric imperfection with 10 circumferential waves measured on the central
circumference, which is 0:11h (see Appendix C). The modal damping used to calculate the
theoretical curves is z1;n ¼ 0:001 and 0.00091 for A1;n and B1;n; respectively, for a force of 0.1N;
z1;n ¼ 0:0017 (0.17%) for both A1;n and B1;n for a force of 3N; and z1;n ¼ 0:0029 and 0.00058 for
A1;n and B1;n; respectively, for a force of 6N. These values have been identified by matching the
maximum value of the measured response. The agreement between the theoretical curves and the
experimental results is good for all the force magnitudes analyzed (force 1.5 and 4.5N are not

Fig. 23. Experimentally measured response phase–frequency curves for the fundamental mode of the water-filled shell;

force 3N. —m—, 1st accelerometer up; —K—, 2nd accelerometer up; – –� – –, 1st accelerometer down; – –&– –, 2nd

accelerometer down.
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reported here for sake of brevity) for both first and second modes (it is excellent for the 2nd mode)
and for both co-ordinates A1;n and B1;n: Only the co-ordinate A1;n participates in the 1st resonance
(B1;nD0); on the other hand, both co-ordinates A1;n and B1;n participate in the 2nd resonance and
travelling wave response arises (A1;n has almost the same value of B1;n for force of 6N). In fact, the

Fig. 24. Response amplitude–frequency relationship for the fundamental mode of the water-filled shell; force 0.1N,

which gives linear behaviour. J, experimental data; ——, stable theoretical solutions: (a) displacement/h from the 1st

accelerometer; (b) displacement/h from the 2nd accelerometer.
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Fig. 25. Response amplitude–frequency relationship for the fundamental mode of the water-filled shell; force 3N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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softening behaviour of the water-filled shell helps interaction between the two modes for the 2nd
resonance. In fact, due to the softening behaviour, the resonance of co-ordinate B1;n moves to
smaller frequency, coming very close to the resonance of A1;n:

Fig. 26. Response amplitude–frequency relationship for the fundamental mode of the water-filled shell; force 6N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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Fig. 27 shows the change in the identified modal damping versus the excitation force, which is
related to the vibration amplitude. The damping of the co-ordinate A1;n increases almost linearly
with the force magnitude; this seems due to the fact that no travelling wave response is observed
for the resonance of A1;n: Damping coefficients of co-ordinates A1;n and B1;n have similar values
for forces of 0.1 and 1.5N, and have exactly the same value for the force of 3N. For this force
magnitude the travelling wave response becomes significant (the amplitude of A1;n becomes about
1/2 of B1;n around resonance of the second mode) and damping on the co-ordinate B1;n largely
decreases for larger forces.
The modes of the water-filled shell immediately following in frequency the fundamental mode

are (n ¼ 4; m ¼ 1) and (n ¼ 6; m ¼ 1), respectively. These two modes have very close natural
frequencies and therefore must be studied together because of their complex interaction. The
natural frequencies of mode (n ¼ 4; m ¼ 1) are split to 84.20 and 87.05Hz; those of mode (n ¼ 6;
m ¼ 1) are 85.22 and 85.94Hz. The locations of the two accelerometers used in the experiments
are given in Table 1. In particular, accelerometers have been placed close to nodes (or antinodes)
of mode (n ¼ 4; m ¼ 1). Mode (n ¼ 6; m ¼ 1) has an antinode close to the excitation point, as it
should be for a perfect shell. The measured linear behaviour of the system is given in Fig. 28 for a
force excitation of 0.1N; it shows that four modes are present in a frequency range of 3Hz. A
satisfactorily comparison between numerical and experimental results for a force of 5N is given in
Fig. 29. No difference is observed in this case between measured acceleration obtained by
increasing and decreasing the excitation frequency. The main difference with the previous case is
that almost no softening-type non-linearity is observed. This is due to the non-linear interaction
between modes with different number of circumferential waves (n ¼ 4 and 6) having almost
coincident natural frequency. The mode expansion used in the calculations employed modes with
four and six circumferential modes. Numerical results have been computed with modal damping

Fig. 27. Damping ratio of the fundamental mode of the water-filled shell versus the excitation force. —B—, co-

ordinate A1;nðtÞ; —’—, co-ordinate B1;nðtÞ:
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z1;4 ¼ 0:0035 for both A1;4 andB1;4; and with z1;6 ¼ 0:0023 for both A1;6 and B1;6: Frequencies have
been normalized with respect to 87.05Hz. A simplification in the numerical study of this case was
the introduction of a small perturbation to the linear part of the equations in order to reproduce
the split in the natural frequencies for modes n ¼ 4 and 6 instead of using geometric
imperfections.
The next mode in frequency is (n ¼ 7; m ¼ 1). Natural frequencies are split to 110.125 and

110.975Hz. Locations of the two accelerometers are given in Table 1, as in the previous cases. It
can be observed that the first accelerometer is close to the excitation point; therefore the co-
ordinate A1;n; reproducing the first accelerometer, is mainly driven and B1;n; second accelerometer,
receives a much smaller force, about 1

3
: Comparison between numerical and experimental results

for a force of 1.5N is given in Fig. 30. The softening behaviour is clearly shown, even if it is weak
in this case, due to the relatively small vibration amplitude reached. Companion mode
participation is quite large for the small vibration amplitude reached and gives rise to travelling
wave response. The main difference between the travelling wave response observed for the
fundamental mode and the one found in this case is that now the companion mode has a larger
(but very close) frequency with respect to the driven mode. Numerical results have been computed
with modal damping z1;n ¼ 0:003 for A1;n and z1;n ¼ 0:002 for B1;n; geometric imperfection *A1;2n ¼
0:1h has been used to reproduce the split frequencies; this value is in strong agreement with the
measured imperfection 0:103h reported in Appendix C.

Fig. 28. Experimentally measured acceleration versus excitation frequency for modes (n ¼ 4 and 6, m ¼ 1) of the water-

filled shell; force 0.1N, which gives linear behaviour. —’—, 1st accelerometer; —B—, 2nd accelerometer.
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Fig. 29. Response amplitude–frequency relationship for modes (n ¼ 4 and 6, m ¼ 1) of the water-filled shell; force 5N.

J, experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from

the 1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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Fig. 30. Response amplitude–frequency relationship for mode (n ¼ 7; m ¼ 1) of the water-filled shell; force 1.5N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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The last mode investigated is (n ¼ 10; m ¼ 1). This case is interesting because the measured
frequency separation between the couple of modes is very small. Moreover, the positions of nodes
and antinodes where the two accelerometers have been placed (see Table 1) show that A1;nðtÞ is
directly excited (driven mode) and B1;nðtÞ is only minimally excited (companion mode). Therefore,
instead of using small geometric imperfections to reproduce perfectly the experimental results,
calculations have been performed for a perfect shell. The measured accelerations have been
converted to displacements, dividing by the excitation circular frequency squared, and have been
plotted in Fig. 31 together with the theoretical responses for the case with force level 1.5N;
normalization of frequency with respect to o1;n ¼ 246:8� 2p has been performed. The modal
damping used to calculate the theoretical curves is z1;n ¼ 0:0023 for A1;n and z1;n ¼ 0:0025 for B1;n:
The agreement between the theoretical and experimental results is strong. Around the resonance
the amplitudes of A1;nðtÞ and B1;nðtÞare close, with B1;nðtÞ smaller than A1;nðtÞ; in this frequency
range the shell response is a travelling wave around the circumference.
The measured response of the shell for force of 3N is shown in Fig. 32. It is particularly

interesting to note that amplitudes of A1;nðtÞ and B1;nðtÞ are coincident in this case in a frequency
range of almost 2Hz around the resonance. The companion mode participation grows with the
vibration amplitude (and the magnitude of the excitation) from zero to the driven mode curve;
after this point, driven and companion mode amplitudes increase simultaneously, giving rise to a
pure travelling wave response. The measured accelerations, converted to displacements, have been
plotted in Fig. 33 together with the theoretical responses for the case with a force level of 3N. The
modal damping used to calculate the theoretical curves is z1;n ¼ 0:003 for both A1;n and B1;n: The
agreement between the theoretical and experimental results is good. The main branch ‘‘1’’
corresponds to zero vibration amplitude of the companion mode B1;nðtÞ; this branch has pitchfork
bifurcations at o=o1;n ¼ 0:9791 and 1.0043 where branch ‘‘2’’ appears. Branch ‘‘2’’ loses stability
through two Neimark-Sacker (torus) bifurcations at o=o1;n ¼ 0:9795 and 0.9944. No stable
response is indicated in Fig. 33 for 0:9871oo=o1;no0:9944; in fact only simple-periodic responses
are indicated as stable solutions in Fig. 33. The calculated response of the shell for
0:9871oo=o1;no0:9944 is modulated in amplitude (quasiperiodic); small modulations have been
measured during experiments; however, they become apparent with increasing the force
excitation; amplitude modulated response will be discussed in Section 8.3.

8.3. Comparison of theoretical and experimental results in the time domain

The time response of mode (n ¼ 10; m ¼ 1) for force excitation of 14N and excitation
frequency 240.5Hz is shown in Fig. 34 representing amplitude modulations. The frequency of
modulations is very small, about 2.1Hz. Presence of amplitude-modulated vibrations is predicted
by the model for mode (n ¼ 10; m ¼ 1). Negative (inward) accelerations are larger than positive
(outward) accelerations of about 13%; this phenomenon is due to significant axisymmetric
oscillation of the shell, which takes place inwards with twice the excitation frequency. In fact,
axisymmetric modes have been used in the mode expansion of the solution because they are non-
linearly coupled to asymmetric modes. From the mechanical point of view, in order to have large-
amplitude oscillations of the shell without stretching significantly the shell circumference (the shell
is very stiff to in-plane loads), dynamic contraction of the mean circumference is necessary; this
phenomenon generates the double-frequency inward axisymmetric oscillation of the shell.
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The experimental force input and accelerations for the fundamental mode (n ¼ 5; m ¼ 1) of the
water-filled shell are shown in Fig. 35 versus time for excitation of magnitude 3N and frequency
75.375Hz measured by decreasing the excitation frequency (down). In these conditions, the shell
response is the one obtained immediately after the big jump (sudden decrement of the response
amplitude) on the left of peak in Fig. 22(b) for a force of 3N. The input force simulates accurately

Fig. 31. Response amplitude–frequency relationship for mode (n ¼ 10; m ¼ 1) of the water-filled shell; force 1.5N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions: (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer.
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a sinusoidal function of time and the measured accelerations are relatively small. Numerical
calculations have been produced using the DIVPAG routine of IMSL, for time integration, to
reproduce the system response and are plotted in Fig. 36. The Fourier series calculated from the
experimental input force has been used to perform numerical simulations. In this case, the Fourier
series follows closely a harmonic function. The series is given by equation (D.1) in Appendix D.
Modes with eight circumferential waves have also been used in the mode expansion because the
natural frequency of mode (n ¼ 8; m ¼ 1) is almost twice the natural frequency of the
fundamental mode; for this reason mode (n ¼ 8; m ¼ 1) is excited by harmonics of the force
excitation that are always present in experimental tests (they are generally small at a distance from
resonance, but they can become important when frequency is close to resonance) and could have
an interaction with the fundamental mode. In particular, modes with 5, 8, 10 and 16
circumferential waves have been used in the expansion in addition to four axisymmetric modes.
The calculated accelerations at the two locations of the accelerometers have been obtained by
using all the generalized co-ordinates introduced in the expansion. The agreement between
numerical and experimental results is strong.
The experimental force input and accelerations for the fundamental mode (n ¼ 5; m ¼ 1) of the

water-filled shell are shown in Fig. 37 versus time for excitation of magnitude 3N and frequency
75.525Hz measured by decreasing the excitation frequency (down). In these conditions, the shell
response is the one obtained very close to the peak in Fig. 22(b) for force of 3N. The input force is
no more a pure sinusoidal function of time and the measured accelerations are quite large. For
acceleration very close to the peak, the corresponding input force has been found to be similarly
distorted for forces of 3N or larger. However, moving little away from the peak, the force

Fig. 32. Experimentally measured acceleration versus excitation frequency for modes (n ¼ 10; m ¼ 1) of the water-filled

shell; force 3N. —K—, 1st accelerometer; —n—, 2nd accelerometer.
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behaviour is more similar to a simple harmonic function, as shown in Fig. 35(a). In this case a
travelling wave response around the shell is observed and the phase shift between the first and
second accelerometer is about p=2: Numerical calculations are given in Fig. 38. The Fourier series
calculated from the experimental input force, see Eq. (D.2) in Appendix D, has been used to

Fig. 33. Response amplitude–frequency relationship for mode (n ¼ 10; m ¼ 1) of the water-filled shell; force 3N. J,

experimental data; ——, stable theoretical solutions; – – –, unstable theoretical solutions. (a) displacement/h from the

1st accelerometer; (b) displacement/h from the 2nd accelerometer. 1, branch ‘‘1’’; 2, branch ‘‘2’’; BP, pitchfork

bifurcation; TR, Neimark–Sacker bifurcations; LP, limit point.
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perform numerical calculations. Contribution of all modes has been used to evaluate the
accelerations at the locations of the two sensors. Modes with eight circumferential waves have also
been used in the mode expansion. The agreement between numerical and experimental results is
quite good. Fig. 39 presents the same calculations obtained by using a mode expansion that does
not include mode (n ¼ 8; m ¼ 1). In this case the numerical response does not contain some
harmonics associated with vibrations of mode shape (n ¼ 8; m ¼ 1). The corresponding
theoretical results for this specific case are in less agreement with experimental data. This weak
agreement between the theoretical and experimental results shows that asymmetric modes with
different number of circumferential waves with respect to the resonant mode should be included in
the mode expansion if they have a 1:1, 1:2 or 1:3 relationships with the frequency of the resonant
mode.
For all the modes considered, generally the shell response is much closer to a simple harmonic

response than the one given in Fig. 37, also in case of distorted input. In fact, this is a particularly
distorted response due to participation of mode (n ¼ 8; m ¼ 1) excited by the 2nd harmonic of the
force excitation.

9. Conclusions

Numerical simulations and experiments on a steel shell, both empty and water-filled, show good
agreement for the different modes investigated and for different magnitudes of harmonic
excitation forces. This indicates that Donnell’s non-linear shallow-shell theory gives accurate
results within the limit of applicability of the theory, i.e., very thin shells, vibration amplitude of
the order of the shell thickness and number of circumferential waves larger than four. Geometric
imperfections, mainly due to the longitudinal weld in the test shell, have been included in the

Fig. 34. Time response of the 1st accelerometer for mode (n ¼ 10; m ¼ 1) of the water-filled shell; force 14N, frequency

240.5Hz.
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Fig. 35. Measured force and acceleration versus time for mode (n ¼ 5; m ¼ 1) of the water-filled shell; force 3N,

frequency 75.375Hz down. J, experimental data; ——, Fourier interpolation. (a) Excitation force; (b) 1st

accelerometer; (c) 2nd accelerometer.
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Fig. 36. Force input used in the model and calculated acceleration versus time for mode (n ¼ 5; m ¼ 1) of the water-

filled shell; force 3N, frequency 75.375Hz down: (a) excitation force; (b) 1st accelerometer; (c) 2nd accelerometer.
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Fig. 37. Measured force and acceleration versus time for mode (n ¼ 5; m ¼ 1) of the water-filled shell; force 3N,

frequency 75.525Hz down. J, experimental data; ——, Fourier interpolation. (a) Excitation force; (b) 1st

accelerometer; (c) 2nd accelerometer.
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Fig. 38. Force input used in the model and calculated acceleration versus time for mode (n ¼ 5; m ¼ 1) of the water-

filled shell; force 3N, frequency 75.525Hz down: (a) excitation force; (b) 1st accelerometer; (c) 2nd accelerometer.
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Fig. 39. Force input used in the model and calculated acceleration versus time for mode (n ¼ 5; m ¼ 1) of the water-

filled shell neglecting participation of mode (n ¼ 8; m ¼ 1); force 3N, frequency 75.525Hz down: (a) excitation force;

(b) 1st accelerometer; (c) 2nd accelerometer.

M. Amabili / Journal of Sound and Vibration 262 (2003) 921–975970



model and have been used to reproduce with accuracy the split of natural frequencies associated
with each asymmetric mode. Measured geometric imperfections, detected from Fourier analysis of
samples taken on limited number of circumferences, are in reasonable agreement with the
values needed to reproduce the natural frequencies. Imperfections with 2n circumferential waves
are those that give the largest effect on natural frequency for the mode with n circumferential
waves.
The split of the double eigenvalue, due to imperfections in the test shell, alters the non-linear

behaviour fundamentally. In particular, five types of different non-linear behaviours have been
identified experimentally and simulated numerically: (i) softening-type non-linearity with
bifurcation of the driven mode response and appearance of travelling wave, characteristics of
shell without imperfections (mode n ¼ 10; m ¼ 1; water-filled shell); (ii) softening-type
non-linearity without bifurcation of the driven mode and with appearance of travelling
wave, characteristics of shell with small split of the double eigenvalue (modes n ¼ 5 and n ¼ 7;
m ¼ 1; water-filled shell); (iii) softening-type non-linearity without bifurcation and no
travelling wave response, characteristics of relatively large split of the double eigenvalue (modes
n ¼ 5m ¼ 1; empty shell); (iv) interaction of asymmetric modes with different number of
circumferential waves that happens when they have very close natural frequencies; no change of
the resonance frequency is observed with increasing vibration amplitude (modes n ¼ 4 and 6,
m ¼ 1; water-filled shell); (v) amplitude-modulated response around resonance, through
Neimark–Sacker bifurcation of the travelling wave response, characteristics of modes with
significant softening non-linearity and almost without split of the double eigenvalue (mode n ¼
10; m ¼ 1; water-filled shell).
The non-linear softening behaviour of the shell is largely increased by filling it with water. The

softening behaviour helps the formation of travelling wave response around the shell. This
travelling response appears also for relatively small vibration amplitudes, smaller than 1

10
of the

shell thickness. In particular, travelling wave response always appears for sufficiently large
excitation when the double eigenvalue associated to asymmetric modes is not split or it is split in
two different frequencies with values very close to each other.
The identified modal damping increases with the magnitude of the harmonic excitation force.

This change is almost linear if there is no travelling wave around the shell circumference;
otherwise the relationship between damping and force is strongly non-linear.
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Appendix A. Particular solution of the stress function

The technique used to calculate the functions of time Fmnj; j ¼ 1;y; 4; in Eq. (23) by using the
Mathematica computer program [28] for symbolic manipulations is described here. If Eq. (11a) is
substituted into the right-hand side of Eq. (3), after some algebra the following expressions are
obtained:
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where N is the same as in Eq. (11a), M is the largest between M1 and M2; *M is the largest between
*M1 and *M2 and Z ¼ px=L; the time dependence has been suppressed here for sake of brevity. By
substituting Eqs. (A.1)–(A.5) and (23) into Eq. (3), the unknown functions Fmni can be identified
by using the computer program Mathematica 4 [28].

Appendix B. Average in-plane restraint stresses

According with the boundary conditions (8) and (9) it is assumed that

%Nx ¼ constant ðin particular; %Nx ¼ 0Þ; %Nxy ¼ 0: ðB:1Þ
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As a consequence, after simple calculations it is obtained that

%Ny ¼ n %Nx þ
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By inserting Eqs. (11a) and (12) into Eq. (B.2), the following expression is obtained:

%Ny ¼ n %Nx þ
Eh

2pR
�2

XM2

m¼1

Am;0ðtÞ
m

(
½1� ð�1Þm� þ

p
4R

XN

n¼1

XM1

m¼1

n2ðA2
m;nðtÞ þ B2

m;nðtÞÞ

þ
p
2R

X%N

n¼1

X%M

m¼1

n2ð *Am;nAm;nðtÞ þ *Bm;nBm;nðtÞÞ

)
; ðB:3Þ

where %N is the smallest between N and *N and %M is the smallest between M1 and *M1:

Appendix C. Data on geometric imperfections

The following Fourier series describes geometric imperfections on the central circumference of
the test shell, where terms with more than 20 waves have been neglected. The coefficients of the
series are given in millimeters/100:

26:35 cosð2yÞ � 4:00 cosð3yÞ � 0:75 cosð4yÞ � 0:43 cosð5yÞ þ 6:51 cosð6yÞ

þ 3:54 cosð7yÞ � 7:94 cosð8yÞ � 9:83 cosð9yÞ � 0:06 cosð10yÞ þ 4:99 cosð11yÞ þ 4:52 cosð12yÞ

� 0:77 cosð13yÞ � 5:04 cosð14yÞ � 3:74 cosð15yÞ þ 1:48 cosð16yÞ þ 4:87 cosð17yÞ þ 2:90 cosð18yÞ

� 2:02 cosð19yÞ � 4:51 cosð20yÞ þ 31:40 sinð2yÞ þ 6:57 sinð3yÞ � 3:78 sinð4yÞ

þ 4:19 sinð5yÞ � 5:83 sinð6yÞ � 1:66 sinð7yÞ þ 9:60 sinð8yÞ � 1:22 sinð9yÞ � 5:73 sinð10yÞ

� 2:62 sinð11yÞ þ 3:20 sinð12yÞ þ 5:38 sinð13yÞ þ 1:72 sinð14yÞ � 3:62 sinð15yÞ � 4:86 sinð16yÞ

� 0:86 sinð17yÞ þ 3:83 sinð18yÞ þ 4:20 sinð19yÞ þ 0:10 sinð20yÞ:

The normalized amplitudes of imperfections with 5, 10, 12, 14 and 20 circumferential waves are
therefore 0:081h; 0:11h; 0:107h; 0:103h and 0:087h; respectively.

Appendix D. Data on measured input forces

The time series obtained by Fourier analysis of the periodic force input of harmonic magnitude
of 3N and frequency 75.375Hz down is

3:06 cosðotÞ � 0:68 cosð2otÞ þ 0:023 cosð3otÞ þ 0:013 cosð4otÞ þ?: ðD:1Þ

The time series obtained by Fourier analysis of the periodic force input of harmonic magnitude
of 3N and frequency 75.525Hz down is

2:94 sinðotÞ þ 1:29 sinð2otÞ � 0:37 cosð2otÞ þ 0:2 sinð3otÞ � 0:87 cosð3otÞ

þ 0:25 sinð4otÞ þ 0:52 cosð4otÞ þ 0:15 sinð5otÞ þ 0:08 cosð5otÞ þ?: ðD:2Þ
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